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Abstract
We study a two-dimensional (2D) spin-half Heisenberg model related
to the quasi-2D antiferromagnets (Ba, Sr)2Cu3O4Cl2 by means of exact
diagonalization and spin-wave theory. The model consists of two inequivalent
interpenetrating square-lattice Heisenberg antiferromagnets A and B. While the
antiferromagnetic interaction JAA within the A subsystem is strong the coupling
JBB within the B subsystem is much weaker. The coupling JAB between A and
B subsystems is competing, giving rise to interesting frustration effects. In
dependence of the strength of JAB we find a collinear Néel phase, non-collinear
states with zero magnetizations as well as canted and collinear ferrimagnetic
phases with non-zero magnetizations. For not too large values of frustration
JAB, which correspond to the situation in (Ba, Sr)2Cu3O4Cl2, we have Néel
ordering in both subsystems A and B. In the classical limit these two Néel states
are decoupled. Quantum fluctuations lead to a fluctuational coupling between
both subsystems (‘order from disorder’) and select the collinear structure. For
stronger JAB we find evidence for a novel spin state with coexisting Néel
ordering in the A subsystem and disorder in the B subsystem.

1. Introduction

The exciting collective magnetic properties of layered cuprates have attracted much attention
over the last decade. A lot of activity in this field was stimulated by the possible connection
of spin fluctuations with the phenomenon of high-temperature superconductivity. But the
rather unusual properties of quantum magnets deserve study on their own to gain a deeper
understanding of these quantum many-body systems. In recent years some of those materials,
such as Ba2Cu3O4Cl2 and Sr2Cu3O4Cl2, have been studied experimentally and theoretically
in more detail [1–5]. The most important difference between (Ba, Sr)2Cu3O4Cl2 and their
parent compound La2CuO4 is the existence of additional Cu(B) atoms located at the centre of
every second Cu(A) plaquette. Both subsystems A and B form square lattices, however, with
different orientations and lattice constants. This A–B lattice is illustrated in figure 1(a). Both
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Figure 1. (a) The A–B lattice with its geometrical unit cell defined by the unit vectors a1 = (a, 0)

and a2 = (0, a). Empty (filled) circles denote A(B)-spins, respectively. (b) Exchange couplings
of the model (1).

copper sites Cu(A) and Cu(B) carry spin half, i.e. quantum fluctuations are important. Since the
magnetic couplings JAA between A spins as well as JBB between B spins are antiferromagnetic
and the coupling JAB between A and B spins is frustrating we have a system of two competing
antiferromagnetic spin-half subsystems.

Three-dimensional examples of two interpenetrating antiferromagnets like garnets
Mn3Cr2Ge3O12 or (FexGa1−x)2Ca3Ge3O12 were discussed by several authors (see, e.g., [6–
8]). For the quasi-2D cuprates like (Ba, Sr)2Cu3O4Cl2 the quantum fluctuations are more
important than in the 3D garnets and the interplay of competing interactions with strong
quantum fluctuations may lead to interesting magnetic phenomena.

Noro et al [1] reported two magnetic phase transitions at TA = 320 K and at TB = 40 K for
Ba2Cu3O4Cl2, being attributed to, respectively, antiferromagnetic ordering of the Cu(A) and
Cu(B) spins. Both critical temperatures differ in one order of magnitude, indicating a strongly
antiferromagnetic coupling between Cu(A) spins and a comparatively small antiferromagnetic
coupling between Cu(B) spins, which is confirmed by band-structure calculations [9].
According to Chou et al [3] the weak ferromagnetic moment found experimentally [2] could be
understood as a consequence of bond-dependent interactions such as pseudodipolar couplings.

The minimal model to describe the main magnetic properties of the competing
antiferromagnets on the A–B lattice is the antiferromagnetic Heisenberg model with three
exchange couplings JAA, JBB and JAB. In what follows we call this model the A–B model.
Some preliminary results for a finite system of N = 24 sites were reported in the conference
paper [10]. However, to describe the weak ferromagnetism observed in these compounds
anisotropic interactions seem to be needed [3–5].

In this paper we want to study the influence of strong quantum fluctuations and frustration
on the ground state of the A–B model using spin-wave theory and exact diagonalization. The
paper is organized as follows: in section 2 we introduce the A–B model and illustrate the
classical magnetic ground-state phases in the parameter region considered. In section 3 we
present an exact-diagonalization study of the ground-state phases and in section 4 the linear
spin-wave approach is used to analyse the Néel phase realized for small JAB in more detail. In
section 5 a summary is given.
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Table 1. The five classical ground-state phases for JAB, JBB > 0 and JBB � JAA, where
SA(B) = |∑n∈A(B) Si | is the total spin of subsystem A(B), and Stotal = |∑n Si | is the total
spin of the whole system.

Phase Range of stability Energy E/s2N SA/s2N SB/s N Stotal/sN

I 0 � JAB � 2
√

JAA JBB − 2
3 JBB − 4

3 JAA 0 0 0

II 2
√

JAA JBB � JAB � 2
√

2JAA − 1
6

J 2
AB

JAA
− 4

3 JAA 0 0 0

III 2
√

2JAA � JAB � (7) − 1√
2

4
3 JAB 0 0 0

IV (7) � JAB � (8) EI V from equation (6) Equation (3) Equation (3) Equation (3)
V (8) � JAB − 4

3 JAB + 2
3 JBB + 4

3 JAA 1 1 1/3

2. The A–B model and its classical ground-state phases

We consider the Hamiltonian (cf figure 1(b))

H = JAA

∑
〈m∈A,n∈A〉

Sm · Sn + JBB

∑
〈m∈B,n∈B〉

Sm · Sn + JAB

∑
〈m∈A,n∈B〉

Sm · Sn, (1)

where the sums run over neighbouring sites only. JAA and JBB denote the antiferromagnetic
couplings within the A(B)-subsystems, respectively. We focus our discussion on parameters
JAA = 1 and JBB = 0.1 which correspond to the situation in (Ba, Sr)2Cu3O4Cl2. The
value of the frustrating inter-subsystem coupling JAB is less reliably known. We consider
antiferromagnetic JAB and use it as the free parameter of the model. The lattice consists of
N = 3N spins with three spins per geometrical unit cell and ten couplings in it.

We start with the discussion of the classical ground state, i.e. the spins Sn are considered
as classical vectors of length s. Varying JAB we have altogether five ground-state phases, see
table 1. Two of them (I and III) have a planar spin arrangement, two (II and IV) are non-planar
and one (V) is collinear. Without loss of generality we choose in this section for the description
of planar spin ordering the x–y plane. We start from weak inter-subsystem coupling JAB � 0.
Then we have Néel ordering in both subsystems (phase I, table 1). These two classical Néel
states shown in figure 2 are decoupled and can rotate freely with respect to each other, i.e. the
ground state is highly degenerated and this degree of freedom is parametrized by the angle ϕ.
The corresponding magnetic unit cell contains six spins. (Thus, later in section 4, we have to
introduce six different magnons in the spin-wave theory for this phase.)

At JAB = 2
√

JAA JBB there is a first-order transition from the Néel phase I to the non-
planar ground-state phase II. Phase II is illustrated in figure 3. The corresponding magnetic
unit cell contains 12 spins and is therefore twice as large as the magnetic unit cell of the Néel
phase I. In this state we have eight different spin orientations characterized as follows:

SII
A1

= s

(
−

√
2

2
cos(α),−

√
2

2
cos(α), sin(±α)

)
,

SII
A2

= s

(√
2

2
cos(α),

√
2

2
cos(α), sin(±α)

)
,

SII
A3

= s

(
−

√
2

2
cos(α),

√
2

2
cos(α),− sin(±α)

)
,

SII
A4

= s

(√
2

2
cos(α),−

√
2

2
cos(α),− sin(±α)

)
,

SII
B1

= s(−1, 0, 0), SII
B2

= s(0,−1, 0),

SII
B3

= s(1, 0, 0), SII
B4

= s(0, 1, 0),

(2)
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Figure 2. The classical ground state for JAB < 2
√

JAA JBB (Néel phase I, cf table 1). Both
subsystems possess Néel order. Because of the vanishing classical mean field both subsystems
decouple magnetically and can freely rotate with respect to each other. The angle ϕ is parametrizing
this degree of freedom. The magnetic unit cell containing six spins is given by b1(2) = a1 ± a2.
The spins within the unit cell are labelled by a running index n = 1, . . . , 6 corresponding to the
six different magnons to be introduced in spin-wave theory.
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Figure 3. The spin orientations of phases II, III and IV. In the non-planar phase II there is an
out-of-plane z component of the A spins illustrated by open and broken circles, where the open
circles and the broken circles belong to opposite directions of the z component. In the planar phase
III this out-of-plane z component is zero. In the non-planar phase IV the out-of-plane z component
of A spins as well as of the B spins is uniform but opposite to each other. The magnetic unit cell
of the magnetic states of phases II, III and IV contains twelve spins.

where α is given by α = arcos(JAB/
√

8JAA). Obviously neighbouring B spins are
perpendicular to each other and consequently the energy EI I is independent of JBB (see table 1).
The in-plane xy components of the A spins of neighbouring spins are also perpendicular.
However, there are finite off-plane z components. These off-plane components (proportional
to sin α, see equation (2)) decrease with JAB and become zero at JAB = 2

√
2JAA, i.e. we have

a second-order transition from the non-planar phase II to the planar phase III at this point. The
spin orientations of phase III are given by equation (2), too, but with the additional condition
α = 0 (see figure 3). In phase III neighbouring A spins as well as neighbouring B spins are
perpendicular to each other and consequently the energy depends on JAB only. All three phases
I, II and III have a zero net magnetization Stotal = 0.
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Further increasing JAB favours an antiparallel alignment of the A spins relative to the
B spins and the planar phase III gives way to a non-planar phase IV where the in-plane xy
components are aligned as in phases II and III (see figure 3). The off-plane z components

in phase IV are given as Sz
n∈A = +s cos θ for A spins and as Sz

n∈B = −s
√

1 − A2 sin2 θ for
B spins. This phase IV can be denoted as a canted ferrimagnet [11] and has a net magnetic
moment SA in the A subsystem and SB in the B subsystem, resulting in a finite total magnetic
moment Stotal :

SIV
A

s2N
=

√
1 − sin2 θ; SIV

B

s N
=

√
1 − A2 sin2 θ; SIV

total = |SA − SB | (3)

with

sin θ =

√√√√√√√√
1 −

(
JAA
JAB

+ JAB
4JBB

− 1
4

√
−24 JAA

JBB
+ 16 J 2

AA

J 2
AB

+ J 2
AB

J 2
BB

)2

−3 JAA
JBB

+ 2 J 2
AA

J 2
AB

+ J 2
AB

8J 2
BB

+
(

3JAA
2JAB

− JAB
8JBB

)√
−24 JAA

JBB
+ 16 J 2

AA

J 2
AB

+ J 2
AB

J 2
BB

(4)

and

A = JAB

2
√

2JBB

− √
2

JAA

JAB
−

√
−3

JAA

JBB
+ 2

J 2
AA

J 2
AB

+
J 2

AB

8J 2
BB

. (5)

This total moment increases with JAB. The energy of phase IV is given by

EI V

s2N
= 4

3
JAA(1 − sin2 θ0) +

2

3
JBB(1 − A2 sin2 θ0)

− 4

3
JAB

(
A√
2

+
√

(1 − sin2 θ)(1 − A2 sin2 θ)

)
. (6)

The phase boundary of the second-order phase transition between III and IV is given by

J III−IV
AB = √

2JAA +
JBB√

2
+

1

2

√
8J 2

AA + 24JAA JBB + 2J 2
BB (7)

and yields J III−IV
AB = 3.099 for JAA = 1 and JBB = 0.1.

Finally, for large JAB the A and B spins are fully polarized along the z axis, i.e. Sn∈A =
(0, 0, +s) and Sn∈B = (0, 0,−s) and a collinear ferrimagnetic phase V is realized. The phase
boundary of this second-order phase transition between IV and V is given by

J IV−V
AB = 2JAA + JBB +

√
4J 2

AA + J 2
BB (8)

leading to J IV−V
AB = 4.102 for JAA = 1 and JBB = 0.1.

3. The quantum ground state—exact diagonalization

To discuss the influence of quantum fluctuations on the classical phases studied in the
last section we use the Lanczos algorithm to calculate the quantum ground state of the
Hamiltonian (1) for a finite lattice of N = 24 spins (figure 4). Again we choose the parameters
JAA = 1, JBB = 0.1 appropriate for (Ba, Sr)2Cu3O4Cl2 and consider JAB as the free parameter.
For N = 24 sites we have 16 A spins and 8 B spins. Since the maximal magnetic unit cell of
the classical ground states contains 12 spins the N = 24 system has the full symmetry of the
classical ground state in the considered parameter region. To reduce the Hilbert space we used
all possible translational and point symmetries of the A–B lattice as well as spin inversion.
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Figure 4. The finite A–B lattice with N = 3N = 24 spins (periodic boundary conditions). The
large circles (sites 1, . . . , 16) belong to subsystem A and the small circles (sites 17, . . . , 24) to
subsystem B.

Figure 5. A–A spin correlation 〈SA
i SA

j 〉 for (i, j) = (1, 2) and (i, j) = (1, 7) (see figure 4) for
the classical (thin curves, length of classical spin vectors is chosen as s = 1/2) and the quantum
(thick curves) model (N = 24, JAA = 1 and JBB = 0.1).

The use of the symmetry allows us to classify the different quantum ground states by their
symmetry.
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Figure 6. B–B spin correlation 〈SB
i SB

j 〉 for (i, j) = (17, 24) and (17, 19) (see figure 4) for the
classical (thin curves, length of classical spin vectors is chosen as s = 1/2) and the quantum (thick
curves) model (N = 24, JAA = 1 and JBB = 0.1).

To compare classical and quantum ground-state phases we present the spin–spin
correlations in figures 5–7. The Néel phase I is present also in the quantum model. However,
the quantum fluctuations lift the classical degeneracy and both subsystems couple. The
fluctuational coupling is known as the order from disorder effect [7, 12] and selects a collinear
quantum state with a finite A–B spin correlation in the quantum Néel phase I (see figure 7).
Moreover, the transition to phase II is shifted to higher values of JAB, indicating that quantum
fluctuations favour collinear versus non-collinear states (see, e.g., [13]). The frustrating
coupling weakens the A–A and B–B spin correlations in the Néel phase I; this weakening is
stronger for the B–B correlations than for the A–A correlations. Hence, a disordered quantum
ground state similar to the J1 − J2 model [14–18] seems to be possible and will be discussed
in more detail in the next section.

The quantum Néel phase gives way to a fairly complex spin state at JAB ≈ 1.02 up to
JAB ≈ 3.13. This state is also a singlet S = 0 as the quantum Néel state. The A–A and A–B
spin correlations of the quantum model follow qualitatively the classical curves (see figures 5
and 7). However, we see some jumps in the correlations connected with level crossings of
ground states belonging to different lattice symmetries. Most likely these level crossings may
be attributed to finite-size effects. The change of A–A and A–B correlations at JAB ≈ 1.02 is
small. However, the B–B correlations change strongly at this point, contrary to the classical
model, where the nearest-neighbour B–B correlation is zero and the next-nearest-neighbour
B–B correlation is strongly antiferromagnetic. The corresponding correlations in the quantum
model are both different from zero and are of the same order of magnitude. One could argue
that quantum fluctuations favour planar versus non-planar arrangement of spins. This argument
is supported by
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Figure 7. A–B spin correlation 〈SA
i SB

j 〉 for (i, j) = (1, 17) and (1, 24) (see figure 4) for the
classical (thin curves, length of classical spin vectors is chosen as s = 1/2) and the quantum (thick
curves) model (N = 24, JAA = 1 and JBB = 0.1).

(i) the circumstance that there is a planar classical state of almost the same energy as the
non-planar state having finite nearest-neighbour B–B correlations and

(ii) by investigation of the so-called scalar chirality Wi jk = Si · (S j ×Sk) being nonzero only
in non-planar states.

This kind of order parameter was widely discussed for the J1–J2 model [14, 16]. We choose
j ∈ B as the running index and consider for i, j, k sites forming an equilateral triangle like
sites 1, 23, 24 in figure 4, i.e. we have k = j + a2 and i = j + a1 + 1

2a1. Then we use as order
parameter (cf [16])

W =
(

1

N

∑
j∈B

τ j Wi jk

)2

(9)

where τ j is a staggered factor, being +1 on sublattice B1 (i.e. sites 17, 19, 21, 23 in figure 4) and
−1 on sublattice B2 (i.e. sites 18, 20, 22, 24 in figure 4). As shown by figure 8 this chirality is
indeed large in the classical non-planar states but we do not see significantly enhanced chiral
correlations in the quantum ground state.

Further increasing JAB leads to a transition from the complex singlet S = 0 phase directly
to an S = 2 phase at JAB ≈ 3.13, which is the quantum counterpart to the classical canted
ferrimagnetic phase IV. This transition is very close to the classical transition III–IV which is
also a transition from zero Stotal to finite Stotal .

The last transition is that to the collinear ferrimagnetic state with S = 4 at JAB ≈ 3.61.
This value is significantly smaller than the corresponding classical value, again indicating that
quantum fluctuations favour collinear spin ordering leading to an enlarged stability region of
the collinear ferrimagnetic phase. Notice that the additional jump just before the last transition
is attributed to a change in total spin S from S = 2 to 3, corresponding to the increase of
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Figure 8. Scalar chirality W (see equation (9)) for the classical (full curve, length of classical spin
vectors is chosen as s = 1/2) and the quantum (crosses) model (N = 24, JAA = 1, JBB = 0.1).

Stotal in the classical phase IV. One characteristic of both ferrimagnetic (S > 0) phases is the
positive correlations within a subsystem (see figures 5 and 6) but negative correlations between
the subsystems (see figure 7).

4. Linear spin-wave theory for the Néel phase

The parameters for which the Néel phase I is realized most likely correspond to the situation in
(Ba, Sr)2Cu3O4Cl2. Therefore we present a more detailed analysis of the magnetic ordering
of this phase using a linear spin-wave theory. Within this approach we calculate the excitation
spectrum and the order parameter as well as the spin-wave velocity.

As usual we perform a Holstein–Primakoff transformation. Because the magnetic unit
cell contains six spins we need at least six different types of magnons being distinguished
by a running index as illustrated in (figure 2). After transforming into the k space the
Hamiltonian (1) is

H = −4N JAAs2 − 2N JBBs2 +
∑

k

Hk

with

Hk = 4JAAs(a+
1ka1k + a+

2ka2k + a+
3ka3k + a+

4ka4k) + 4JBBs(a+
5ka5k + a+

6ka6k)

− JAAs(γ1kγ2k + γ ∗
1kγ

∗
2k)(a

+
1ka+

4−k + a+
2ka+

3−k + a1ka4−k + a2ka3−k)

− JAAs(γ1kγ
∗
2k + γ ∗

1kγ2k)(a
+
1ka+

3−k + a+
2ka+

4−k + a1ka3−k + a2ka4−k)

− JBBs(γ 2
1k + γ 2

2k + γ ∗2
1k + γ ∗2

2k )(a+
5ka+

6−k + a5ka6−k)

+ JABs(g + 1)(γ1k(a
+
1ka6k + a2ka+

6k) + γ ∗
1k(a1ka+

6k + a+
2ka6k))/2

+ JABs(g − 1)(γ1k(a
+
1ka+

6−k + a2ka6−k) + γ ∗
1k(a1ka6−k + a+

2ka+
6−k))/2
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+ JABs(g + 1)(γ2k(a
+
4ka5k + a3ka+

5k) + γ ∗
2k(a4ka+

5k + a+
3ka5k))/2

+ JABs(g − 1)(γ2k(a
+
4ka+

5−k + a3ka5−k) + γ ∗
2k(a4ka5−k + a+

3ka+
5−k))/2

− JABs(g − 1)(γ1k(a
+
2ka5k + a1ka+

5k) + γ ∗
1k(a2ka+

5k + a+
1ka5k))/2

− JABs(g + 1)(γ1k(a
+
2ka+

5−k + a1ka5−k) + γ ∗
1k(a2ka5−k + a+

1ka+
5−k))/2

− JABs(g − 1)(γ2k(a
+
3ka6k + a4ka+

6k) + γ ∗
2k(a3ka+

6k + a+
4ka6k))/2

− JABs(g + 1)(γ2k(a
+
3ka+

6−k + a4ka6−k) + γ ∗
2k(a3ka6−k + a+

4ka+
6−k))/2 (10)

and γnk = exp(ikan/2). Here N is the number of geometrical unit cells N = N/3. The
vectors an are the unit vectors of the geometrical lattice: a1 = a(1, 0) and a2 = a(0, 1) and
a is the lattice constant (see figure 1(a)). g is defined as g = cos(ϕ), where ϕ parametrizes
the angle between the Néel states of the classical subsystems A and B. Without any further
calculation it is obvious that quantum fluctuations stabilize collinear ordering. According to
the Hellmann–Feynman theorem [19] the relation ∂ E/∂λ = 〈∂ H/∂λ〉 holds, where H is a
Hamiltonian depending on a parameter λ and E is an eigenvalue of H . Because (10) depends on
cos(ϕ) terms only one finds ∂ E/∂ϕ ∼ sin(ϕ) being zero for ϕ = 0, π , i.e. as discussed already
above in the quantum system the classical degeneracy is lifted and collinear spin structures
are preferred. Thus, all quantities have to be calculated as averages over both possible ground
states belonging to ϕ = 0 and π .

The diagonalization of the bosonic Hamiltonian is carried out as usual by means of Green
functions. As it should be, there are six non-degenerated spin-wave branches–two of them are
optical whereas the remaining ones are two acoustical branches per subsystem. The acoustical
branches become zero in the centre of the Brillouin zone only. Expanding these branches in
the vicinity of k = 0 gives two different spin-wave velocities cA and cB :

cA = as

√
2J 2

AA + 4J 2
BB − JBB J 2

AB

JAA
+ q, cB = as

√
2J 2

AA + 4J 2
BB − JBB J 2

AB

JAA
− q,

q =
√

(2J 2
AA − 4J 2

BB)2 +
8J 2

AB

J 2
AA

(J 3
AA JBB − JAA J 3

BB) +
J 4

AB

J 2
AA

(J 2
BB − J 2

AA),

(11)

where the two acoustical branches belonging to the same subsystem have identical spin-wave
velocities. At the classical phase-transition point JAB = 2

√
JAA JBB cB becomes zero whereas

cA remains finite.
The ground-state energy Esw

0 is given by

Esw
0 = −2N(2JAA + JBB)s(s + 1) +

∑
k

6∑
m=1

ωmk/2 (12)

and the sublattice magnetizations are calculated by

〈Sz
n〉 = s − 2

N

∑
k

〈a+
nkank〉, n = 1, . . . , 6 (13)

for A spins as well as for B spins.
The results of the spin-wave calculation for the relevant parameters JAA = 1 and JBB = 0.1

are presented in figures 9 and 10. We start with the ground-state energy shown in figure 9.
While the classical energy in phase I is independent of JAB we find a slight decrease with JAB in
the quantum model. For comparison we show the exact-diagonalization and spin-wave results
for N = 24. The difference is small (1.3% for JAB = 0), indicating that linear spin-wave
theory seems to be very appropriate for phase I.

The spin-wave theory allows us to calculate the corresponding sublattice magnetizations
〈Sz

A〉 and 〈Sz
B 〉 in the A and B subsystems for N → ∞ (see equation (13)). The results are
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Figure 9. Ground-state energy per spin for s = 1/2: spin-wave (N = ∞ and 24) and exact-
diagonalization results (N = 24).

Figure 10. Sublattice magnetizations 〈Sz
A〉 and 〈Sz

B〉 (see equation (13)) for s = 1/2 in the infinite
system: spin-wave results (JAA = 1 and JBB = 0.1).

shown in figure 10. Although 〈Sz
A〉 is slightly diminished with increasing JAB the Néel order of

the A subsystem is stable within the limits of the classical phase I. In contrast to that the Néel
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Figure 11. Nearest-neighbour correlation within the A subsystem and the B subsystem (exact-
diagonalization results for N = 24, JAA = 1, JBB = 0.1). For better comparison we have scaled
〈Si S j 〉 by its corresponding values for JAB = 0.

order of the B subsystem is strongly suppressed and breaks down at JAB ≈ 0.58. This finding
is supported by the ED results for the spin–spin correlations (see figure 11), where we see also a
stronger suppressing of B–B correlations with increasing JAB than of A–A correlations. Hence
we argue that the strong quantum fluctuations in the spin-half model in combination with strong
frustration may lead to a novel ground-state phase with Néel ordering in the A subsystem but
quantum disorder in the B subsystem. A similar observation has recently been made for the
frustrated square-lattice J1 − J2 spin-one spin-half ferrimagnet, where for strong frustration
the spin-half subsystem might be disordered but the spin-one subsystem is ordered [11].

5. Summary

In this paper the results of exact diagonalization and linear spin-wave theory for the ground state
of a system of two interpenetrating spin-half Heisenberg antiferromagnets on square lattices are
presented. We consider intra-subsystem couplings of different strength JBB = 0.1JAA which
correspond to the situation in (Ba, Sr)2Cu3O4Cl2. In addition to strong quantum fluctuations
there is a competing inter-subsystem coupling JAB between both spin systems, giving rise to
interesting frustration effects. The classical version of our model possesses a rich magnetic
phase diagram with collinear, planar and non-planar ground states. Quantum fluctuations
may change the ground-state phases. In particular, we find indications for preferring collinear
versus non-collinear and planar versus non-planar phases by quantum fluctuations.

For small JAB both spin subsystems are in the Néel state. These Néel states decouple
classically. Quantum fluctuations lead to a fluctuational coupling of both subsystems. With
increasing JAB the frustration tends to destroy the Néel ordering of the weaker coupled B
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subsystem but not in the stronger coupled A subsystem. The comparison between exact finite-
size data and approximate spin-wave data gives a good agreement between both approaches.
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